02.
$$\lambda = \frac{1}{\sqrt{2}\pi d^2} (N_V) = \frac{V}{\sqrt{2}\pi d^2 N}$$
 ... $\lambda \propto V$ hence "half"
03. for adiabatic PV^F = const = $\frac{P^{-1}}{\Gamma}$ = constant.
Hence $\frac{P_A}{P_A} = (\frac{T_2}{T_1})^{N(r-1)}$... $\frac{P_2}{P_1} = \frac{3/2}{3^{1/2}} = 27$
04. Mg is also apperent due to air and in liquid also.
Hence $M_q - \frac{M}{d_2} dg = M \circ g - \frac{M \circ}{d_1} dg$. Mo is true mass
Hence $M_0 = M \cdot \frac{d_1(d_2 - d)}{d_2(d_1 - d)}$
05. Shearing strain = tan $\theta = \eta^1$ shear stress $(\eta = \frac{F/A}{X/L})$
 \therefore tan $\theta = \frac{q \times 10^4}{0.25 \times 5.6 \times 10^3} = \frac{6.4}{2} \times 10^5$
06. $F = G \cdot \frac{M_1 \cdot M_2}{(gR)^2} = G \cdot \frac{4\pi}{3\pi} (3R)^3 (5R)^3 \cdot \frac{4\pi}{3\pi}$... $F \propto R^4$
09. $\ell = B \cdot \frac{dA}{dt} = 40 \times 10^3 \times 0.5 = 20 \text{ mV}$
10. $B_1 = \frac{400T \cdot R^2}{2(R^2 + (\sqrt{13}R)^2)^3/2} = \frac{400T R^2}{2(R^2 + 3R^2)^3/2} = \frac{400T}{16R}$
 $B_2 = \frac{40T}{2R}$ Hence $\frac{B_1}{B_2} = \frac{1}{3}$
11. Current through Golvonometer = $\frac{3}{50 + 2950} = 10^3 A$
 $io^3 A$ gives 30 div. hence for $50 + 2950 = 10^3 A$
 $io^3 A$ gives 30 div. hence for $\frac{1}{50 + 2950} = 10^3 A$
 $io^3 A$ gives 30 div. hence for $\frac{1}{50 + 2950} = 10^3 A$
 $io^3 A$ gives 30 div. hence for $\frac{1}{50 + 2950} = 10^3 A$
 $io^3 A$ gives 30 div. hence for $\frac{1}{50 + 2950} = 10^3 A$
 $io^3 A$ gives 30 div. hence for $\frac{1}{50 + 2950} = 10^3 A$
 $io^2 A gives 10^3 = \frac{3}{50 + 2} \Rightarrow x = 44550 \cdot \Omega$
(Ans. is possible by inspection and
the change will be in Y coordinate (now will be 0)
 Q earther will be at $\frac{1}{3} \cdot \frac{7}{2}$ (2.V3) from bottom.
i.e. shift by 1

02
16. at t=0, x=0.005m or 5mm and hence x=1 & veriod is 2sec hence 2π=w=π. so phase is (πt+π)
17. Vmax = Vo hence Vrms=Vot
$12 + mv^2 = \frac{1}{(Ze)(2e)}$ hence $x \propto V_m$ other terms const.
11. 2. 4 TEO χ $4\pi\epsilon_0 \chi$ $k \approx L = n.h$: P.L is independent of n
$90. F = mv = m \cdot \frac{1}{n} = 2\pi$
hence $P.L = \prod_{j=1}^{n} (\frac{1}{5_1} + \frac{1}{5_2}) = \frac{P}{p} = \frac{R(5_1 + 5_2)}{5_1 + 5_2}$
23. $P^{n} = \frac{1}{R}$ Q $D(-2)$ BA
q^{2} R $dq = 1 dq : q = R + R$
24. L= R i dE R dE
25. At Q (due to 2Q) is E then at 1 Q
27. $q \times 10'' = \frac{1}{4\pi\epsilon}$ we need $4\pi\epsilon$ 3^2 11 $q \times 10'' = 4\pi\epsilon.90$
from given $x_{TE} = 10'' : E = \frac{1}{8} = \frac{1}{1} \times 10''$
Hence $E = 10^{11}$ Hence $E = 10^{11} E \cdot Q \cdot 10^{11}$
ATTE
29. G is universal const.
V = 2t+2 at $t=2$; $V=0$ a
30. $V = 1.2(100 - 36) = 643$ AKE - $L.2(100 - 36) = 643$ AKE - $L.2(100 - 36) = 643$
BRL = 2 $B \cdot \frac{1}{12}$ $B \cdot \frac{1}{12}$ $h = \frac{1}{1000 \times 9.8}$ 1000 (10 not 1)
31. DP= 113 100
= 100m : $MR^2 20 = (MR^2 + mR^2) \times : = 10$
32. $T_1 \omega_1 = T_2 \omega_2 \cdots T_2 \cdots T_2 \cdots T_2$
$23 = 2M_{R_{H}}^{2} = \frac{2}{2}M_{R_{S}}^{2} : \frac{R_{H}}{R_{S}} = \sqrt{\frac{3}{5}}$
35.3.1.10 = P.AV = -100 J; AU = AU = 000 J
34. No heat given DU= DQ= 150J Hence DUT= 250J
Case II W=0 $w^2 r (420^2 (0.2) = 80 N$
35. $V = \sqrt{\frac{1}{2}} = \frac{1}{12}$ $\frac{1}{12}$

36.
$$W = \int_{0}^{2} F_{0} dx = \int_{0}^{2} (2t) (t^{2} dt)$$

 $= 16J$
 $= 16J$
 $F = m \cdot q = m \cdot (2t)$
 $V = t^{2} \cdot q = 2t$
38. $I_{A} \cos^{2} 30^{\circ} = I_{B} \cdot \cos^{2} 60^{\circ} \cdot \frac{T_{A}}{T_{B}} = \frac{1}{3}$
42. 9f inclination of plane is 0 then $S_{n} = 0 + \frac{9Sin\theta}{2}(2n-1)$
and $S_{n+1} = 0 + \frac{9Sin\theta}{2}(2(n+1)-1) \Rightarrow S_{m1} = \frac{9Sin\theta}{2}(2n+1)$
44. find V, then V_{2} & take diff. but will be time consuming
Hence $Use \frac{1}{V} + \frac{1}{U} = \frac{1}{f} \therefore -\frac{1}{V^{2}} dv + -\frac{1}{U^{2}} du = 0$ hence
 $dV = -\frac{V^{2}}{U^{2}} du$
 $(\frac{1}{V} + \frac{1}{60} = \frac{1}{-10} \div \frac{1}{V} = \frac{1}{60} - \frac{1}{10} = \frac{-1}{12})$
 $= -\frac{(-12)^{2}}{(-60)^{2}} (+ btt) mm (du will be two as toword)$
 $mir For)$
45. $\frac{1}{f} = (\frac{1.5}{1.75} - 1) (-\frac{1}{R} - (\frac{1}{R})) = \frac{0.28}{R} \div f = \frac{R}{0.28} = 3.5R$
 $3s twe is converging (A)$
50. $0 \rightarrow 6$ in 1 second. $\therefore 0 = 6 ms^{2} \therefore s_{1} = \frac{1}{2} \cdot 6.1^{2} = 3m$.
in $t = 1$ to $2 - S_{2} = 6.1 + \frac{1}{2}(-6).1^{2} \Rightarrow S_{2} = -3m$ (speed o)
in $t = 2$ to $3 - S_{3} = 0 + \frac{1}{2}(-6).1^{2} \Rightarrow S_{3} = -3m$
 $Av. \ velocity = -\frac{3}{3} = -1 (or 1)$
 $Av. \ speed = 9/3 = 3$

CHEMISTRY (SECTION – A) 51. Calculate the weight of one atom of Ag - (At. wt. of Ag = 108)(B) 16.93×10^{-23} gm (D) 36×10^{-23} gm (A) 17.93×10^{-23} gm (C) 17.93×10^{23} gm Sol.(A) : N atoms of Ag weigh 108 gm \therefore 1 atom of Ag weigh = $\frac{108}{N}$ $=\frac{108}{6.023\times10^{23}}$ $= 17.93 \times 10^{-23}$ gm. **52.** The number of gram molecules of oxygen in $6.02 \times 10^{24} CO$ molecules is (b) 5 gm molecules (a) 10 gm molecules (c) 1 gm molecules (d) 0.5 gm molecules **Solution:** (b) 6.02×10^{23} molecules = 1 mole of *CO* \therefore 6.02 × 10²⁴ CO molecules = 10 moles of CO = 10 gms of Oxygen atom = 5 gm molecules of O_2 53. The relative abundance of two isotopes of atomic weight 85 and 87 is 75% and 25% respectively. The average atomic weight of element is (a) 75.5 (b) 85.5 (c) 87.5 (d) 86.0 **Solution:**(b) Average atomic weight/ The average isotopic weight _ % of 1st isotope × relative mass of 1st isotope + % of 2nd isotope × relative mass of 2nd isotope 100 $=\frac{85\times75+87\times25}{100}=85.5$ 54. Arrange the orbitals of H-atom in the increasing order of their energy - $3p_X$, 2s, $4d_{XV}$, 3s, $4p_Z$, $3p_V$, 4s (A) $2s < 3s = 3p_X = 3p_V < 4s = 4p_Z = 4d_{XV}$ (B) $2s < 3s < 3p_X = 3p_V < 4s = 4p_Z = 4d_{XV}$ (C) $2s < 3s < 3p_X = 3p_V < 4s = 4p_Z = 4d_{XV}$ (D) $2s < 3s < 3p_x = 3p_y < 4s < 4p_z < 4d_{xy}$ 55. If 900 J/g of heat is exchanged at boiling point of water, then what is increase in entropy (a) 43.4 *J/mole* (b) 87.2 *J/mole* (c) 900 *J/mole* (d) Zero **Solution:** (a) Boiling point $(T_{h}) = 100^{\circ}C = 373 K$; $\Delta H_{v} = 900 J/g$ $\Delta S_{vap} = \frac{\Delta H_v}{T}$; Molecular weight of water = 18 $\Delta S_{vap} = \frac{900 \times 18}{373} = 43.4 \, JK^{-1} mol^{-1}$ 56. The heat of combustion of carbon is -94 kcal at 1 atm pressure. The intrinsic energy of CO₂ is (a) + 94 kcal(b) –94 *kcal* (c) + 47 kcal(d) -47 kcal **Solution:**(b) $C_{(s)} + O_{2(g)} \rightarrow CO_2(g); \Delta H = -94 \ kcal$ $\Delta H = \Delta E + \Delta n_{a}RT$; $\Delta E = ?$

$$\Delta n_g = 1 - 1 = 0$$
; $\Delta H = \Delta E$; $\Delta E = -94 kcal$

- **57.** 2 moles of PCl_5 were heated in a closed vessel of 2 litre capacity. At equilibrium, 40% of PCl_5 is dissociated into PCl_3 and Cl_2 . The value of equilibrium constant is
- (a) 0.266 (b) 0.53 (c) 2.66 (d) 5.3 Solution: (a) At start, $PCl_5 \approx PCl_3 + Cl_2$ At equilibrium. $\frac{2 \times 60}{100} \frac{2 \times 40}{100} \frac{2 \times 40}{100}$ Volume of cantainer = 2 litre $\therefore K_c = \frac{\frac{2 \times 40}{100 \times 2} \times \frac{2 \times 40}{100 \times 2}}{\frac{2 \times 60}{100 \times 2}} = 0.266$
- **58.** How many grams of CaC_2O_4 (molecular weight = 128) on dissolving in distilled water will give one litre saturated solution. $[K_{sp}(CaC_2O_4)] = 2.5 \times 10^{-9} mol^2 l^{-2}$

(a) 0.0064 g (b) 0.01280 g (c) 0.0128 g (d) 1.2800 g Solution: (a) $s = \sqrt{K_s} = \sqrt{2.5 \times 10^{-9}} = 5 \times 10^{-5} M$ Weight of $CaC_2O_4 = 5 \times 10^{-5} \times 128 \ gL^{-1} = 0.0064 \ g$

- **59.** If $pK_w = 13.36$ at $50^{\circ}C$, the *pH* of water at the same temperature is (a) 7.00 (b) 6.68 (c) 7.63 (d) 6.00 **Solution:** (b) $pH + pOH = pK_w$ For H_2O , pH = pOH $\therefore x + x = 13.36$; 2x = 13.36 $x = \frac{13.36}{2} = 6.68$
- 60. The oxidation state of tungsten in Na₂W₄O₁₃.10H₂O is (A) + 7 (B) + 6 (C) + 4 (D) + 4.5

61. 34.2 g of canesugar is dissolved in 180 g of water. The relative lowering of vapour pressure will be(a) 0.0099(b) 1.1597(c) 0.840(d) 0.9901

Solution: (a)

$$\frac{P_A^0 - P_A}{P_A^0} = \frac{W_B / M_A}{W_B / M_B + W_A / M_A} = \frac{34.2 / 342}{34.2 / 342 + 180 / 18} = \frac{0.1}{10.1} = 0.0099$$

62. A solution containing 6.8 g of a nonionic solute in 100 g of water was found to freeze at -0.93°C. The freezing point depression constant of water is 1.86. Calculate the molecular weight of the solute (a) 13.6 (b) 34 (c) 68 (d) 136
Solution: (d)

$$M_{B} = \frac{1000 \times K_{f} \times W_{B}}{\Delta T_{f} \times W_{A}} = \frac{1000 \times 1.86 \times 6.8}{100 \times 0.93} = 136$$

63. A metal wire carries a current of 1 A. How many electrons move past a point in the wire in one second

 10^{23}

(a)
$$6.02 \times 10^{23}$$
 (b) 3.12×10^{18} (c) 3.02×10^{18}

(d) 6.24×10^{18}

Solution (d)

Total charge passed in one second $'Q' = I \times t = 1 \times 1 = 1c$

- ∴ 96500 current carried by 6.02×10^{23} electrons ∴ 1*C* current carried by $\frac{6.02 \times 10^{23}}{96500} = 6.24 \times 10^{18}$
- 64. Molar conductivity of a solution is $1.26 \times 10^{2} \Omega^{-1} cm^{2} mol^{-1}$. Its molarity is 0.01. Its specific conductivity will be

(a) 1.26×10^{-5} (b) 1.26×10^{-3} (c) 1.26×10^{-4} (d) 0.0063 Solution: (b)

$$\Lambda_m = \frac{\kappa \times 1000}{\text{Molarity}} \text{ or } \kappa = \frac{\Lambda_m \times \text{Molarity}}{1000} = \frac{1.26 \times 10^{-2} \times 0.01}{1000} = 1.26 \times 10^{-3}.$$

- 65. A gaseous hypothetical chemical equation 2A = 4B + C is carried out in a closed vessel. The concentration of *B* is found to increase by $5 \times 10^{-3} mol l^{-1}$ in 10 second. The rate of appearance of *B* is
 - (a) $5 \times 10^{-4} mol \ l^{-1} \ sec^{-1}$ (b) $5 \times 10^{-5} mol \ l^{-1} \ sec^{-1}$ (c) $6 \times 10^{-5} mol \ l^{-1} \ sec^{-1}$ (d) $4 \times 10^{-4} mol \ l^{-1} \ sec^{-1}$

Solution: (a)

Increase in concentration of $B = 5 \times 10^{-3} \text{ mol } l^{-1}$, Time = 10 sec. Rate of appearance of $B = \frac{\text{Increase of concentrat ion of } B}{\text{Time taken}} = \frac{5 \times 10^{-3} \text{ mol } l^{-1}}{10 \text{ sec}} = 5 \times 10^{-4} \text{ mol } l^{-1} \text{ sec}^{-1}$.

66. Thermal decomposition of a compound is of the first order. If 50% of a sample of the compound is decomposed in 120 minutes, how long will it take for 90% of the compound to decompose
(a) 399 min
(b) 2.99 min
(c) 39.9 min
(d) 3.99 min

Solution : (a)

Half life of reaction =120 min

$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{120} = 5.77 \times 10^{-3} \text{ min}^{-1}$$

Applying first order reaction equation, $t = \frac{2.303}{k} \log_{10} \frac{a}{(a-x)}$;

If
$$a = 100$$
, $x = 90$ or $(a - x) = 10$

So,
$$t = \frac{2.303}{5.77 \times 10^{-3}} \cdot \log_{10} 10 = \frac{2.303}{5.77 \times 10^{-3}} = 399 \text{ min}$$

67. Match list-I with list-II and choose the correct answer from the code given below:

List-I		List-II			
(a) Strongest reductant			i. Aurum		
(b) Half filled d-orbital			ii. cerium		
(c) Coinage metal			iii. chromium		
(d) Lanthanide			iv. iodide ion		
Code is -					
	(a)	(b)	(c)	(d)	
(\mathbf{A})	iv	iii	i	ii	
(B)	i	ii	iii	iv	
(C)	iv	i	iii	ii	
(D)	ii	iii	i	iv	

- **68.** Atomic radius decreases in a period, but after halogens, the atomic radius suddenly increases. Thus, inert gases has almost highest radius in a period. The explanation for such an increase is-
 - (A) Inert gases has most stable configuration
 - (B) Inert gases do not take part in bonding
 - C) Vander Waal's radius is reported in case of inert gases
 - (D) None of these

69. Identify the correct statement from the given alternatives:

(A) Intra molecular hydrogen bonding is not found to occur in 2 hydroxy benzaldehyde

- (B) The boiling poing of hydrogen iodide (HI) is more than hydrogen fluoride (HF)
- C) The dipole moment of CH₃Cl is not equal to zero
- $\overline{(D)}$ CH₃F has a larger dipole moment that CH₃Cl

70. In which of the following species the angle arround the central atom is exactly equal to 109°28' :

	(A) SF ₄	(B) NH ₃	(C) NH ⁺ ₄	(D) None of the above				
71.	 71. Boron has an extremely high melting point because of : (A) The strong vander Waals forces between its atoms (B) The strong binding forces in the covalent polymer (C) Its ionic crystal structure (D) Allotropy 							
72.	Which element-element b (A) C–C	oond has the highest bond d (B) Si–Si	issociation energy ? (C) Ge–Ge	(D) Sn–Sn				
73.	73. Which one of the following is the strongest oxidising agent -(A) HCIO(B) HCIO2(C) HCIO3(D) HCIO4							
74.	The decreasing tendency (A) S > Se > Te > Po	to exist in puckered 8-mem (B) Se > S > Te > Po	bered ring structure is - (C) $S > Te > Se > Po$	(D) Te > Se > S > Po				

- 75. The lanthanide contraction is responsible for the fact that -
 - (A) Zr and Y have about the same radius
 - (B) Zr and Nb have similar oxidation state
 - (C) Zr and Hf have about the same radius
 - (D) Zr and Zn have the same oxidation state

- 76. Which one of the following is expected to exhibit optical isomerism [en = ethylenediamine] -(A) Trans-[Co(en)₂Cl₂] $(B)Cis-[Pt(NH_3)_2Cl_2]$ (C) Cis-[Co(en)2Cl2] (D)Trans-Pt(NH₃)₂Cl₂] 77. Aqueous solution of Ni²⁺ contains $[Ni(H_2O)_6]^{2+}$ and its magnetic moment is 2.83 BM. When ammonia is added in it, comment on the magnetic moment of solution -(A) It will remain same (B) It increases from 2.83 BM (C) It decreases from 2.83 BM (D) It cannot be predicated theoretically 78. When a mixture of solid NaCl solid $K_2Cr_2O_7$ is heated with conc. H_2SO_4 orange red vapours are obtained of the compound (b) Chromyl chloride (a) Chromous chloride (c) Chromic chloride (d) Chromic sulphate 79. Group reagent for the precipitation of group II basic radicals for the qualitative analysis table is (b) NH_4Cl (solid) + NH_4OH solution + H_2S (a) Dil. $HCl + H_2S$ (c) $(NH_4)_2 CO_3$ solution (d) None of these 80. The IUPAC name of - $\begin{array}{ccc} CH_3-CH--C-CH-OH\\ & \parallel & \parallel\\ CH_3 & O & CH_3 \end{array}$ (A) 4 - methyl -2-hydroxy-3- pentanone (B) 2-hydroxy -4- methyl-3- pentanone (C) both are correct (D) None 81. Metamerism is shown by -(A) Diethyl ether and n-propyl methyl ether (B) Ethyl alcohol and diethyl ether (C) Acetone and propionaldehyde (D) Propionic acid and acetic acid 82. Boiling point of a liquid can be increased by-A) Increasing the pressure (B) Decreasing the pressure (C) Purifying the liquid (D) Adding water to it 83. Consider the following carbanions : (I) H₃CO-ĊΗ₂ (II) O_2 (III) **〈** Correct decreasing order of stability is -(A) II > III > IV > I(B) III > IV > I > II(C) IV > I > II > III(D) I > II > III > IV**84.** Which of the following correctly shows the order of decreasing basicity -(A) Aniline > o-nitroaniline > p-nitroaniline > m-nitroaniline (B) Aniline > p-nitroaniline > o-nitroaniline > m-nitroaniline
 - Aniline > m-nitroaniline > p-nitroaniline > o-nitroaniline
 - (D) o-Nitroaniline > p-nitroaniline > aniline > m-nitroaniline
- 85. Unbranched alkenes on ozonolysis give -
 - (A) Only ketone
 - (C) Aldehydes & ketone

(B) Only aldehydes (D) All of the above

(a) Calcium (b) Phorphorus (c) Sulphur (d) Sodium