2. $\lambda=\frac{1}{\sqrt{2} \pi d^{2}(N / v)}=\frac{V}{\sqrt{2} \pi d^{2} N} \quad \therefore \lambda \alpha V$ hence "half"
3. for adiabatic $P V^{r}=$ const $=\frac{P^{r-1}}{T^{r}}=$ constant.

Hence $\frac{P_{2}}{P_{1}}=\left(\frac{T_{2}}{T_{1}}\right)^{r /(r-1)} \therefore \frac{P_{2} T^{r}}{P_{1}}=3^{\frac{3 / 2}{1 / 2}}=27$
04. Mg is also apperent due to air and in liquid also.

Hence $M g-\frac{M}{d_{2}} d \xi=M_{0} g-\frac{M_{0}}{d_{1}} d \xi$. Mo is true mass Hence $M_{0}=M \cdot \frac{d_{1}\left(d_{2}-d\right)}{d_{2}\left(d_{1}-d\right)}$
05. Shearing strain $=\tan \theta=\eta^{-1}$. shear stress. $\left(\eta=\frac{F / A}{x / L}\right)$

$$
\therefore \tan \theta=\frac{9 \times 10^{4}}{0.25 \times 5.6 \times 10^{9}} \cong 6.4 \times 10^{-5}
$$

6. $F=G \cdot \frac{M_{1} \cdot M_{2}}{(8 R)^{2}}=\frac{G \cdot \frac{4}{3} \pi(3 R)^{3}(5 R)^{3} \cdot \frac{4}{3} \pi}{(8 R)^{2}} \therefore F \propto R^{4}$
7. $e=B \cdot \frac{d A}{d t}=40 \times 10^{-3} \times 0.5=20 \mathrm{mV}$
8. $B_{1}=\frac{\mu_{0} I \cdot R^{2}}{2\left(R^{2}+(\sqrt{3} R)^{2}\right)^{3 / 2}}=\frac{\mu_{0} I R^{2}}{2\left(R^{2}+3 R^{2}\right)^{3 / 2}}=\frac{\mu_{0} I}{16 R}$

$$
B_{2}=\frac{\mu_{0} I}{2 R} \text { Hence } \frac{B_{1}}{B_{2}}=\frac{1}{8}
$$

11. Current through Golvonometer $=\frac{3}{50+2950}=10^{-3} \mathrm{~A}$ $10^{-3} \mathrm{~A}$ gives 30 div. hence for
20 div current will be $\frac{2}{3} \times 10^{-3} \mathrm{~A}$

$$
\therefore \frac{2}{3} \times 10^{-3}=\frac{3}{50+x} \Rightarrow x=4450 \Omega
$$

12. $S \leftrightarrow \Delta$ if upper mass (sphere) is removed the change will be in Y coordinate (now will be 0) Q earlier will be at $\frac{1}{3} \cdot \frac{\sqrt{3}}{2}(2 \sqrt{3})$ from bottom. i.e. shift by 1
13. at $t=0, x=0.005 \mathrm{~m}$ or 5 mm and hence $\alpha=\pi \quad 02$ \& period is 2 sec hence $\frac{2 \pi}{T}=\omega=\pi$. So phase is $\bar{\sigma}\left(\pi t+\frac{\pi}{6}\right)$
14. $V_{\text {max }}=V_{0}$ hence $V_{\text {rms }}=\frac{V_{0}}{\sqrt{2}}$
15. $\frac{1}{2} m v^{2}=\frac{1}{4 \pi \epsilon_{0}} \frac{\left(z_{e}\right)(2 e)}{x}$ hence $x \propto y / m$ other terms const.
16. $P=m v=m \cdot \frac{k}{n_{0}} \& L=\frac{n \cdot h}{2 \pi} \therefore P \cdot L$ is independent of n hence $P \cdot L=n^{0}$
17. $24 . \quad i=\frac{d \phi / d t}{R} \therefore \frac{d q}{d t}=\frac{1}{R} \cdot \frac{d \phi}{d t} \therefore q=\frac{1}{R} \cdot \frac{B(A-0)}{R}=\frac{B A}{R}$
18. $\begin{aligned} & \left.P S_{R} S_{1}^{S_{1}}\right)^{S_{2}} \\ & S_{R}\end{aligned} \frac{R^{n}}{R}=\frac{\left(\frac{1}{S_{1}}+\frac{1}{S_{2}}\right)^{-1}}{R} \Rightarrow \frac{P}{Q}=\frac{R\left(S_{1}+S_{2}\right)}{S_{1} S_{2}}$
19. At Q (due to $2 Q$) is E then at $2 Q$ (due to Q) is $E / 2$.
20. $Q \times 10^{\prime \prime}=\frac{1}{4 \pi \epsilon} \cdot \frac{Q}{r^{2}}$ we need $\frac{1}{4 \pi \epsilon} \cdot \frac{Q}{r^{2}}$.
from given $\gamma 4 \pi \epsilon=10^{11} \therefore E=\frac{|V|}{\gamma}=\frac{Q \times 10^{11}}{\frac{1}{4 \pi \epsilon} \times 10^{11}}=4 \pi \epsilon . Q 10^{22}$

$$
\begin{aligned}
& m \text { given } \gamma 4 \pi \epsilon=10 \\
& \therefore \gamma=\frac{10^{11}}{4 \pi \epsilon} \quad \text { Hence } E=4 \pi \epsilon \cdot Q \cdot 10^{22}
\end{aligned}
$$

29. G is universal const.
30. $v=2 t+2 \therefore$ at $t=2 ; v=6 \&$ at $t=4 ; v=10$ hence

$$
\begin{aligned}
& V=2 t+2 \therefore \text { at } t=2 \\
& \triangle K E=\frac{1}{2} \cdot 2(100-36)=64 \mathrm{~J} \\
& \therefore h=\frac{9}{100}
\end{aligned}
$$

31. $\Delta P=h e g=B \cdot \frac{.1}{100} \therefore h=\frac{9.8 \times 10^{8}}{1000 \times 9.8} \cdot \frac{1}{1000}\left(\rho_{\omega}=1000\right)$

$$
=100 \mathrm{~m}
$$

32. $I_{1} \omega_{1}=I_{2} \omega_{2} \therefore \frac{M R^{2}}{2} \cdot 20=\left(\frac{M R^{2}}{2}+m R^{2}\right) x \therefore \omega_{2}^{\prime}=x=10$
33. $\frac{2}{3} M \cdot R_{H}^{2}=\frac{2}{5} M R_{S}^{2} \therefore \frac{R_{H}}{R_{S}}=\sqrt{\frac{3}{5}}$
34. No heat given $\therefore W=P \cdot \Delta V=-100 \mathrm{~J} ; \Delta U=\Delta Q-W=100 \mathrm{~J}$ care II $W=0 \therefore \Delta U=\Delta Q=150 \mathrm{~J}$ Hence $\Delta U_{T}=250 \mathrm{~J}$
35. $v=\sqrt{ } \frac{T}{Y}=\frac{\omega}{k} \therefore T=\frac{\omega^{2} Y}{k^{2}}=\frac{420^{2}}{21^{2}} \cdot(0.2)=80 \mathrm{~N}$
36.

$$
\begin{array}{rlrl}
W & =\int_{0}^{2} f \cdot d x=\int_{0}^{2} 2(2 t)\left(t^{2} d t\right) & x & =\frac{t^{3}}{3} \therefore d x=\frac{3 t^{2} d t}{3} \\
& =16 \mathrm{~J} & & f=m \cdot a=m \cdot(2 t) \\
& & v t^{2} \therefore a=2 t
\end{array}
$$

38. $I_{A} \cos ^{2} 30^{\circ}=I_{B} \cdot \cos ^{2} 60^{\circ} \cdot \frac{I_{A}}{I_{B}}=\frac{1}{3}$
39. If inclination of plane is θ then $S_{n}=0+\frac{9 \sin \theta}{2}(2 n-1)$ and $S_{n+1}=0+\frac{9 \sin \theta}{2}(2(n+1)-1) \Rightarrow S_{n+1}=\frac{g \sin \theta}{2}(2 n+1)$
40. Find v_{1} then v_{2} \& take diff. but will be time consuming Hence use $\frac{1}{v}+\frac{1}{u}=\frac{1}{f} \therefore-\frac{1}{v^{2}} d v+\frac{-1}{u^{2}} d u=0$ hence

$$
\begin{aligned}
& \text { Hence use } \frac{1}{v}+\frac{1}{u}=\frac{1}{f}\left(\frac{1}{v}+\frac{1}{-60}=\frac{1}{-10} \therefore \frac{1}{v}=\frac{1}{60}-\frac{1}{10}=\frac{-1}{12}\right) \\
& \begin{aligned}
d v & =-\frac{v^{2}}{u^{2}} \cdot d u \\
& =-\frac{(-12)^{2}}{(-60)^{2}} \cdot(+1) \mathrm{mm}\left(\begin{array}{l}
\text { du will be tee as toward } \\
\text { mirror })
\end{array}\right. \\
& =\frac{1}{25} \mathrm{~mm} .
\end{aligned}
\end{aligned}
$$

45. $\frac{1}{f}=\left(\frac{1.5}{1.75}-1\right)\left(\frac{-1}{R}-\left(\frac{1}{R}\right)\right)=\frac{0.28}{R} \therefore f=\frac{R}{0.28}=3.5 R$ as the is converging (A)
46. $0 \rightarrow 6$ in 1 second. $\therefore a=6 \mathrm{~ms}^{-2} \therefore S_{1}=\frac{1}{2} \cdot 6 \cdot 1^{2}=3 \mathrm{~m}$.

$$
\begin{aligned}
& 0 \rightarrow 6 \text { in } 1 \text { second. } \therefore a=6 \mathrm{~ms}^{-2} \therefore s_{1}=1.0 .1(\text { speed } 0 \text {) } \\
& \text { in } t=1 \text { to } 2 S_{2}=6 \cdot 1+\frac{1}{2}(-6) \cdot 1^{2} \Rightarrow s_{2}=3 \mathrm{~m} \text { (opacity }=\frac{-3}{3}=-1 \text { (or 1) } \\
& \text { in } t=2 \text { to } S_{3}=0+\frac{1}{2}(-6) \cdot 1^{2} \Rightarrow s_{3}=-3 \mathrm{~m}
\end{aligned}
$$

Av. velocity $=\frac{-3}{3}=-1$ (or 1)
Av. speed $=9 / 3=3$

CHEMISTRY (SECTION - A)

51. Calculate the weight of one atom of $\mathrm{Ag}-(\mathrm{At}$. wt. of $\mathrm{Ag}=108)$
(A) $17.93 \times 10^{-23} \mathrm{gm}$
(B) $16.93 \times 10^{-23} \mathrm{gm}$
(C) $17.93 \times 10^{23} \mathrm{gm}$
(D) $36 \times 10^{-23} \mathrm{gm}$
Sol.(A)
$\because \mathrm{N}$ atoms of Ag weigh 108 gm
$\therefore 1$ atom of Ag weigh $=\frac{108}{\mathrm{~N}}$

$$
\begin{aligned}
= & \frac{108}{6.023 \times 10^{23}} \\
& =17.93 \times 10^{-23} \mathrm{gm}
\end{aligned}
$$

52. The number of gram molecules of oxygen in $6.02 \times 10^{24} \mathrm{CO}$ molecules is
(a) 10 gm molecules
gm molecules
(c) 1 gm molecules
(d) 0.5 gm molecules

Solution: (b) 6.02×10^{23} molecules $=1$ mole of CO
$\therefore 6.02 \times 10^{24} \mathrm{CO}$ molecules $=10$ moles of CO
$=10 \mathrm{gms}$ of Oxygen atom $=5 \mathrm{gm}$ molecules of O_{2}
53. The relative abundance of two isotopes of atomic weight 85 and 87 is 75% and 25% respectively. The average atomic weight of element is
(a) 75.5
85.5
(c) 87.5
(d) 86.0

Solution:(b)
Average atomic weight/ The average isotopic weight
$=\frac{\% \text { of } 1 \text { st isotope } \times \text { relative mass of } 1 \text { st isotope }+\% \text { of } 2 \text { nd } \text { isotope } \times \text { relative mass of } 2 \text { nd } \text { isotope }}{100}$
$=\frac{85 \times 75+87 \times 25}{100}=85.5$
54. Arrange the orbitals of H -atom in the increasing order of their energy -
$3 \mathrm{p}_{\mathrm{x}}, 2 \mathrm{~s}, 4 \mathrm{~d}_{\mathrm{xy}}, 3 \mathrm{~s}, 4 \mathrm{p}_{\mathrm{z}}, 3 \mathrm{p}_{\mathrm{y}}, 4 \mathrm{~s}$
(A) $2 \mathrm{~s}<3 \mathrm{~s}=3 \mathrm{p}_{\mathrm{x}}=3 \mathrm{p}_{\mathrm{y}}<4 \mathrm{~s}=4 \mathrm{p}_{\mathrm{z}}=4 \mathrm{~d}_{\mathrm{xy}}$
(B) $2 \mathrm{~s}<3 \mathrm{~s}<3 \mathrm{p}_{\mathrm{x}}=3 \mathrm{p}_{\mathrm{y}}<4 \mathrm{~s}=4 \mathrm{p}_{\mathrm{z}}=4 \mathrm{~d}_{\mathrm{xy}}$
(C) $2 \mathrm{~s}<3 \mathrm{~s}<3 \mathrm{p}_{\mathrm{x}}=3 \mathrm{p}_{\mathrm{y}}<4 \mathrm{~s}=4 \mathrm{p}_{\mathrm{z}}=4 \mathrm{~d}_{\mathrm{xy}}$
(D) $2 \mathrm{~s}<3 \mathrm{~s}<3 \mathrm{p}_{\mathrm{x}}=3 \mathrm{p}_{\mathrm{y}}<4 \mathrm{~s}<4 \mathrm{p}_{\mathrm{z}}<4 \mathrm{~d}_{\mathrm{xy}}$
55. If $900 \mathrm{~J} / \mathrm{g}$ of heat is exchanged at boiling point of water, then what is increase in entropy
(a) $43.4 \mathrm{~J} /$ mole
(b) $87.2 \mathrm{~J} / \mathrm{mole}$
(c) $900 \mathrm{~J} / \mathrm{mole}$
(d) Zero

Solution: (a)
Boiling point $\left(T_{b}\right)=100^{\circ} \mathrm{C}=373 \mathrm{~K} ; \Delta H_{v}=900 \mathrm{~J} / \mathrm{g}$
$\Delta S_{\text {vap }}=\frac{\Delta H_{v}}{T}$; Molecular weight of water $=18$
$\Delta S_{\text {vap }}=\frac{900 \times 18}{373}=43.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
56. The heat of combustion of carbon is -94 kcal at 1 atm pressure. The intrinsic energy of CO_{2} is
(a) +94 kcal
(d) -47 kcal

$$
\begin{aligned}
& \text { (b) }-94 \text { kcal } \quad \text { (c) }+47 \mathrm{kcal} \\
& C_{(s)}+O_{2(g)} \rightarrow C O_{2}(g) ; \Delta H=-94 \mathrm{kcal} \\
& \Delta H=\Delta E+\Delta n_{g} R T ; \Delta E=? \\
& \Delta n_{g}=1-1=0 ; \Delta H=\Delta E ; \Delta E=-94 \mathrm{kcal}
\end{aligned}
$$

Solution:(b)
57. 2 moles of PCl_{5} were heated in a closed vessel of 2 litre capacity. At equilibrium, 40% of $P C l_{5}$ is dissociated into PCl_{3} and Cl_{2}. The value of equilibrium constant is
(a) 0.266
(b) 0.53
(c) 2.66
(d) 5.3

Solution: (a)
At start, $\quad \mathrm{PCl}_{5} \rightleftharpoons \underset{0}{ } \rightleftharpoons \underset{0}{\mathrm{PCl}_{3}}+\underset{0}{ } \mathrm{Cl}_{2}$
At equilibrium. $\frac{2 \times 60}{100} \frac{2 \times 40}{100} \frac{2 \times 40}{100}$
Volume of cantainer $=2$ litre
$\therefore K_{c}=\frac{\frac{2 \times 40}{100 \times 2} \times \frac{2 \times 40}{100 \times 2}}{\frac{2 \times 60}{100 \times 2}}=0.266$
58. How many grams of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ (molecular weight $=128$) on dissolving in distilled water will give one litre saturated solution. $\left[K_{s p}\left(\mathrm{CaC}_{2} \mathrm{O}_{4}\right)\right]=2.5 \times 10^{-9} \mathrm{~mol}^{2} \mathrm{l}^{-2}$
$0.0064 g$
(b) 0.01280 g
(c) $0.0128 g$
(d) 1.2800 g

Solution: (a)
$s=\sqrt{K_{s}}=\sqrt{2.5 \times 10^{-9}}=5 \times 10^{-5} \mathrm{M}$
Weight of $\mathrm{CaC}_{2} \mathrm{O}_{4}=5 \times 10^{-5} \times 128 \mathrm{gL}^{-1}=0.0064 \mathrm{~g}$
59. If $p K_{w}=13.36$ at $50^{\circ} \mathrm{C}$, the $p H$ of water at the same temperature is
(a) 7.00
6.68
(c) 7.63
(d) 6.00

Solution: (b)
$p H+p O H=p K_{w}$
For $\mathrm{H}_{2} \mathrm{O}, \mathrm{pH}=\mathrm{pOH}$
$\therefore x+x=13.36 ; 2 x=13.36$
$x=\frac{13.36}{2}=6.68$
60. The oxidation state of tungsten in $\mathrm{Na}_{2} \mathrm{~W}_{4} \mathrm{O}_{13} \cdot 10 \mathrm{H}_{2} \mathrm{O}$ is -
(A) +7
(B) +6
(C) +4
(D) +4.5
61. $34.2 g$ of canesugar is dissolved in $180 g$ of water. The relative lowering of vapour pressure will be
0.0099
(b) 1.1597
(c) 0.840
(d) 0.9901

Solution: (a)

$$
\frac{P_{A}^{0}-P_{A}}{P_{A}^{0}}=\frac{W_{B} / M_{A}}{W_{B} / M_{B}+W_{A} / M_{A}}=\frac{34.2 / 342}{34.2 / 342+180 / 18}=\frac{0.1}{10.1}=0.0099
$$

62. A solution containing 6.8 g of a nonionic solute in 100 g of water was found to freeze at $-0.93^{\circ} \mathrm{C}$. The freezing point depression constant of water is 1.86 . Calculate the molecular weight of the solute
(a) 13.6
(b) 34
(c) 68
(d) 136

Solution: (d)
$M_{B}=\frac{1000 \times K_{f} \times W_{B}}{\Delta T_{f} \times W_{A}}=\frac{1000 \times 1.86 \times 6.8}{100 \times 0.93}=136$
63. A metal wire carries a current of 1 A . How many electrons move past a point in the wire in one second
(a) 6.02×10^{23}
(b) 3.12×10^{18}
(c) 3.02×10^{23}
6.24×10^{18}

Solution (d)
Total charge passed in one second ' Q ' $=I \times t=1 \times 1=1 \mathrm{c}$
$\because 96500$ current carried by 6.02×10^{23} electrons
$\therefore 1 C$ current carried by $\frac{6.02 \times 10^{23}}{96500}=6.24 \times 10^{18}$
64. Molar conductivity of a solution is $1.26 \times 10^{2} \Omega^{-1} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. Its molarity is 0.01 . Its specific conductivity will be
(a) 1.26×10^{-5}
1.26×10^{-3}
(c) 1.26×10^{-4}
(d) 0.0063

Solution: (b)
$\Lambda_{m}=\frac{\kappa \times 1000}{\text { Molarity }}$ or $\kappa=\frac{\Lambda_{m} \times \text { Molarity }}{1000}=\frac{1.26 \times 10^{-2} \times 0.01}{1000}=1.26 \times 10^{-3}$.
65. A gaseous hypothetical chemical equation $2 A \rightleftharpoons 4 B+C$ is carried out in a closed vessel. The concentration of B is found to increase by $5 \times 10^{-3} \mathrm{~mol} l^{-1}$ in 10 second. The rate of appearance of B is
$5 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{sec}^{-1}$
(b) $5 \times 10^{-5} \mathrm{~mol} \mathrm{l}^{-1} \mathrm{sec}^{-1}$
(c) $6 \times 10^{-5} \mathrm{~mol} \mathrm{l} l^{-1} \mathrm{sec}^{-1}$
(d $4 \times 10^{-4} \mathrm{~mol} \mathrm{l}^{-1} \mathrm{sec}^{-1}$

Solution: (a)
Increase in concentration of $B=5 \times 10^{-3} \mathrm{~mol} l^{-1}$, Time $=10 \mathrm{sec}$.
Rate of appearance of $B=\frac{\text { Increase of concentrat ion of } B}{\text { Time taken }}=\frac{5 \times 10^{-3} \mathrm{~mol} l^{-1}}{10 \mathrm{sec}}=5 \times 10^{-4} \mathrm{~mol}^{-1} \mathrm{sec}^{-1}$.
66. Thermal decomposition of a compound is of the first order. If 50% of a sample of the compound is decomposed in 120 minutes, how long will it take for 90% of the compound to decompose
399 min
(b) 2.99 min
(c) 39.9 min
(d) 3.99 min

Solution : (a)
Half life of reaction $=120 \mathrm{~min}$
$k=\frac{0.693}{t_{1 / 2}}=\frac{0.693}{120}=5.77 \times 10^{-3} \mathrm{~min}^{-1}$
Applying first order reaction equation, $t=\frac{2.303}{k} \log _{10} \frac{a}{(a-x)}$;
If $a=100, x=90$ or $(a-x)=10$
So, $t=\frac{2.303}{5.77 \times 10^{-3}} \cdot \log _{10} 10=\frac{2.303}{5.77 \times 10^{-3}}=399 \mathrm{~min}$
67. Match list-I with list-II and choose the correct answer from the code given below:

List-I

(a) Strongest reductant
(b) Half filled d-orbital
(c) Coinage metal
(d) Lanthanide

Code is -

	(a)	(b)	(c)	(d)
(A)	iv	iii	i	ii
(B)	i	ii	iii	iv
(C)	iv	i	iii	ii
(D)	ii	iii	i	iv

68. Atomic radius decreases in a period, but after halogens, the atomic radius suddenly increases. Thus, inert gases has almost highest radius in a period. The explanation for such an increase is-
(A) Inert gases has most stable configuration
(B) Inert gases do not take part in bonding
(C) Vander Waal's radius is reported in case of inert gases
(D) None of these
69. Identify the correct statement from the given alternatives:
(A) Intra molecular hydrogen bonding is not found to occur in 2 hydroxy benzaldehyde
(B) The boiling poing of hydrogen iodide (HI) is more than hydrogen fluoride (HF) The dipole moment of $\mathrm{CH}_{3} \mathrm{Cl}$ is not equal to zero
(D) $\mathrm{CH}_{3} \mathrm{~F}$ has a larger dipole moment that $\mathrm{CH}_{3} \mathrm{Cl}$
70. In which of the following species the angle arround the central atom is exactly equal to $109^{\circ} 28^{\prime}$:
(A) SF_{4}
(B) NH_{3}
(C) NH_{4}^{+}
(D) None of the above
71. Boron has an extremely high melting point because of :
(A) The strong vander Waals forces between its atoms

The strong binding forces in the covalent polymer
(C) Its ionic crystal structure
(D) Allotropy
72. Which element-element bond has the highest bond dissociation energy ?
(A) $\mathrm{C}-\mathrm{C}$
(B) $\mathrm{Si}-\mathrm{Si}$
(C) $\mathrm{Ge}-\mathrm{Ge}$
(D) $\mathrm{Sn}-\mathrm{Sn}$
73. Which one of the following is the strongest oxidising agent -
HCIO
(B) HClO_{2}
(C) HClO_{3}
(D) HClO_{4}
74. The decreasing tendency to exist in puckered 8-membered ring structure is -
(A) $\mathrm{S}>\mathrm{Se}>\mathrm{Te}>\mathrm{Po}$
(B) $\mathrm{Se}>\mathrm{S}>\mathrm{Te}>\mathrm{Po}$
(C) $\mathrm{S}>\mathrm{Te}>\mathrm{Se}>\mathrm{Po}$
(D) $\mathrm{Te}>\mathrm{Se}>\mathrm{S}>\mathrm{Po}$
75. The lanthanide contraction is responsible for the fact that -
(A) Zr and Y have about the same radius
(B) Zr and Nb have similar oxidation state

Zr and Hf have about the same radius
(D) Zr and Zn have the same oxidation state
76. Which one of the following is expected to exhibit optical isomerism [en = ethylenediamine] -
(A) Trans-[Co(en) $\left.)_{2} \mathrm{Cl}_{2}\right]$
(B)Cis-[Pt(NH3)2 Cl_{2}]
Cis-[Co(en) $\left.)_{2} \mathrm{Cl}_{2}\right]$
(D)Trans- $\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}$]
77. Aqueous solution of Ni^{2+} contains $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ and its magnetic moment is 2.83 BM . When ammonia is added in it, comment on the magnetic moment of solution -
It will remain same
(B) It increases from 2.83 BM
(C) It decreases from 2.83 BM
(D) It cannot be predicated theoretically
78. When a mixture of solid NaCl solid $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is heated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ orange red vapours are obtained of the compound
(a) Chromous chloride
Chromyl chloride
(c) Chromic chloride
(d) Chromic sulphate
79. Group reagent for the precipitation of group II basic radicals for the qualitative analysis table is
Dil. $\mathrm{HCl}+\mathrm{H}_{2} \mathrm{~S}$
(b) $\mathrm{NH}_{4} \mathrm{Cl}$ (solid) $+\mathrm{NH}_{4} \mathrm{OH}$ solution $+\mathrm{H}_{2} \mathrm{~S}$
(c) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}_{3}$ solution
(d) None of these
80. The IUPAC name of -

(A) 4 - methyl -2-hydroxy-3- pentanone
(B) 2-hydroxy -4- methyl-3- pentanone
(C) both are correct
(D) None
81. Metamerism is shown by -
A) Diethyl ether and n-propyl methyl ether
(B) Ethyl alcohol and diethyl ether
(C) Acetone and propionaldehyde
(D) Propionic acid and acetic acid
82. Boiling point of a liquid can be increased by-
(A) Increasing the pressure
(B) Decreasing the pressure
(C) Purifying the liquid
(D) Adding water to it
83. Consider the following carbanions :
(I)

(III)

(II)

(IV)

Correct decreasing order of stability is -
A) II $>$ III $>$ IV $>$ I
(B) III $>$ IV $>$ I $>$ II
(C) IV $>$ I $>$ II $>$ III
(D) I $>$ II $>$ III $>$ IV
84. Which of the following correctly shows the order of decreasing basicity -
(A) Aniline >o-nitroaniline > p-nitroaniline > m-nitroaniline
(B) Aniline >p-nitroaniline > o-nitroaniline > m-nitroaniline Aniline > m-nitroaniline > p-nitroaniline > o-nitroaniline
(D) o-Nitroaniline > p-nitroaniline > aniline > m-nitroaniline
85. Unbranched alkenes on ozonolysis give -
(A) Only ketone
(C) Aldehydes \& ketone

Only aldehydes
(D) All of the above

SECTION - B (Attempt any 10 questions)

86. $\mathrm{CH}_{3}-{\underset{C}{C H}}^{\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}+\mathrm{HBr}}$ (product) which is predominate ; X is -
(A)

(C)

(D) None is correct
87. Which of the following, on being heated with alcoholic KOH , will respond positively to the carbylamine test
(A) Chloroform and silver powder
(B) Chloroform and aniline
(C) Methyl chloride and aniline
(D) Methyl cyanide and aniline
88. Phenol reacts with bromine in CS_{2} at a low temperature, the product is -
(A) m-Bromophenol
(B) p-Bromophenol
o-and p-Bromophenol
(D) 2, 4, 6-Tribromophenol
89. Aldol condensation between the following compounds followed by dehydration gives methyl vinyl ketone-
(A) HCHO and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
(B) HCHO and $\mathrm{CH}_{3} \mathrm{CHO}$
(C) Two molecules of $\mathrm{CH}_{3} \mathrm{CHO}$
(D) Two molecules of $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
90. K_{a} will have the highest value for which of the following acids. -
(A) Fluoroacetic acid
Trichloroacetic acid
(C) Trimethyl acetic acid
(D) Lactic acid
91. A secondary amine is a compound which possesses-
(A) two $-\mathrm{NH}_{2}$ groups
(B) one $-\mathrm{NH}_{2}$ group attached to a secondary carbon
(C) one-NH-group bonded to two alkyl or aryl groups
(D) one $-\mathrm{NH}_{2}$ group attached to the second carbon of the main carbon chain
92. A amino acid without asymmetrical carbon atom is-
Glycine
(B) Threonine
(C) Proline
(D) Histidine
93. $A \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{B} \xrightarrow{\mathrm{Cl}_{2}} \mathrm{C} \xrightarrow[\text { Ether }]{\mathrm{Na}} \mathrm{C}_{2} \mathrm{H}_{6}$ in the above reaction sequence A and B respectively are -
(A) $\mathrm{CaC}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}$
(B) $\mathrm{Al}_{4} \mathrm{C}_{3}, \mathrm{C}_{2} \mathrm{H}_{6}$
$\mathrm{Al}_{4} \mathrm{C}_{3}, \mathrm{CH}_{4}$
(D) $\mathrm{CaC}_{2}, \mathrm{CH}_{4}$
94. Indenify A, B, and C in the following reactions-
(a)

(b)

(c) C

(B) Zn , benzene, sodium ethoxide
(C) Zn , cyclohexanone, sodium ethoxide
(D) None of the above
95. Catalyst $\mathrm{SnCl}_{2} / \mathrm{HCl}$ is used in
(a) Stephen's reduction
(b) Cannizzaro reaction
(c) Clemmensen's reduction
(d) Rosenmund's reduction
96. Benzene is obtained by all the following reactions except -
(A) Decarboxylation of sodium benzoate
(B) Deoxygenation of phenol
(C) Reduction of diazonium chloride
(D) Catalytic hydrogenation of acetylene
97. The type of hybrid orbitals used by chlorine atom in $\mathrm{ClO}^{-}, \mathrm{ClO}_{2}^{-}, \mathrm{ClO}_{3}^{-}$and ClO_{4}^{-}is/are:
(A) $\mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$ and $\mathrm{sp}^{3} \mathrm{~d}$
(B) sp and sp^{3}
(C) Only sp^{3}
(D) Only sp
98. If electron, hydrogen, helium and neon nuclei are all moving with the velocity of light, then the wavelengths associated with these particles are in the order
Electron > hydrogen > helium > neon
(b) Electron > helium > hydrogen > neon
(c) Electron < hydrogen < helium < neon
(d) Neon < hydrogen < helium < electron
99. An isolated system is that system in which
(a) There is no exchange of energy with the surroundings
(b) There is exchange of mass and energy with the surroundings

There is no exchange of mass and energy with the surroundings
(d) There is exchange of mass with the surroundings
100. Electrolysis of molten anhydrous calcium chloride produces
(a) Calcium
(b) Phorphorus
(c) Sulphur
(d) Sodium

